
International Journal of Computer Trends and Technology Volume 72 Issue 6, 15-24, June 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I6P103 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Applications of Micro-Frontend Application

Development in a Customer Support CRM

Tanmaya Gaur

Principal Architect, Customer Support, T-Mobile US, Washington, USA.

Corresponding Author : tanmay.gaur@gmail.com

Received: 16 April 2024 Revised: 22 May 2024 Accepted: 03 June 2024 Published: 15 June 2024

Abstract - Micro-frontends extend the concept of micro-services to the world of UI. The idea behind Micro Frontends is to

develop applications as a composition of features which are owned and developed completely isolated and by independent teams.

These experiences are strung together either at runtime or build-time to deliver a single cohesive application experience to the

end user. Customer Relationship Management (CRM) is a system that helps businesses manage their interactions with current

and potential customers. CRM systems can provide various functions, such as customer service, sales automation, contact

management and more. CRM systems are essential for businesses that want to improve their customer satisfaction, retention,

and loyalty, as well as increase their sales and revenue. A traditional CRM system is traditionally monolithic, where the system

is built as a single unit that shares the same codebase, database, and user interface. Developing and maintaining a CRM system

as a monolith can be challenging to scale, especially for large and complex businesses that have multiple teams, departments,

and products. These teams often fall back to breaking down the CRM into multiple isolated applications to deal with the

maintainability and operability challenges. This whitepaper explores Micro-frontend Architecture in delivering CRM

Applications. This allows operational flexibility but helps standardize the experience for users and the tech stack for the

enterprise. The paper will attempt to provide an overview of considerations, outline key features, address the challenges in

development and illustrate how composable designs can help application teams tackle these obstacles.

Keywords - Customer relationship management, CRM, Telecom, Web Development, Micro-frontend.

1. Introduction
This paper will propose developing enterprise Apps,

specifically CRMs, as a Micro-frontend instead of traditional

web development. For large Enterprises, CRM Can quickly

become huge and unwieldy. Taking the example of a telco’s

CRM, it supports everything from sales scenarios like device

upgrades and adding new lines to service scenarios like rate

plan change, device, network troubleshooting, etc.

Moreover, as the telco ends up supporting multiple

product offerings and lines of business, the required functions

of the application start to bloat. Many enterprises end up either

building multiple different applications to support their needs.

This comes at the cost of having to maintain multiple

applications and often tech stacks while also requiring

customer agents using these apps must deal with constant app

swivels and experience inconsistencies.

Building an enterprise’s CRM as a traditional monolith

leads to significant challenges, such as

• Difficulty in scaling, testing, and deploying the system, as

any change in one part of the system may affect the whole

system.

• Lack of flexibility and customization, as different teams

and products may have different needs and preferences

for their CRM functions.

• Increased complexity and technical debt as the system

grows larger and more interdependent over time.

• Reduced performance and user experience, as the system

may become slow, buggy, and outdated.

To overcome these challenges, the topic of this paper

proposes developing the CRM application as a micro-

frontend. Micro-frontend is a modular approach to building

web applications, where each feature or function of the

application is developed and deployed independently as a

separate unit. Each micro-frontend has its own codebase and

user interface and communicates with other micro-frontends

through well-defined interfaces. This way, each micro-

frontend can be developed, tested, and deployed

independently without affecting the entire application.

At the highest level, some immediate benefits of using a

micro-frontend style development for a CRM system spring to

mind.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Tanmaya Gaur / IJCTT, 72(6), 15-24, 2024

16

• Improved scalability, testability, and operability, as each

micro-frontend can be scaled, tested, and deployed

separately without affecting the rest of the application.

• Increased flexibility and customization, as different teams

and products can make the pattern and design choices for

their micro-frontends and tailor them to their specific

needs and preferences.

• Reduced complexity and technical debt, as each micro-

frontend has a clear boundary and responsibility and can

be easily replaced or updated without affecting the rest of

the system.

• Enhanced performance and user experience, as each

micro-frontend can be optimized for its own functionality

and deliver a fast, reliable, and consistent user interface.

This sounds great, right! But with great flexibility comes

hidden costs and challenges, which teams often only

encounter as they begin to scale. This paper aims to explore

options for building a CRM as a collection of micro frontends

integrated into a unified customer support dashboard. While

the paper focuses on a Telco CRM, the discussion can be

easily applied by any large application team exploring the

micro-frontend architecture.

This paper will discuss the implementation options,

organizational impacts, and challenges of using a micro-

frontend style development for a customer support CRM

system. At the same time, there are some online documents on

patterns to implement micro-frontends and hello world

examples. There is minimal to no documentation which details

the architecture, strategies, considerations, and best practices

around this implementation paradigm. That is the research gap

this paper will try to address.

2. Implementation Options
There are multiple options available to implement micro-

frontend style Apps. This section lists out some commonly

used patterns, each with its own advantages and

disadvantages. It is important to understand the use case and

determine the best option for specific requirements and needs.

While this section only focuses on the web-components

strategy, there are good documents scattered on the internet

which detail the other options and their implications.

In most cases, it may make sense to optimize by

developing global Concerns with the container app such that

they are always available to all other experiences. Each of the

approaches below utilizes a container or router application to

launch or navigate other micro-frontend experiences.

2.1 Server-Rendered

Server-rendered web architecture (see Figure 1), which

has been around almost as long as web development and is a

suitable example of a micro-frontend, based on development

and isolation strategy. Every reload asks the backend server to

return a specific resource specified in the URL or request.

These resources and dependencies can be independently

developed, and the base html for the experience is returned on

the first request. Once the html is returned and loaded, it

requests relevant dependencies.

Fig. 1 Pattern for server rendered web architecture

2.2. Iframes

Going with the theme of patterns that have existed for a

long time, let us discuss using Iframes (see Figure 2) to build

a web application; iframe is an html element that loads another

html page within the document. The page launching the iframe

is the parent and the embedded html page launched is referred

to as the child. The two-run is completely standalone. All

communication relies on post messages for parent-to-child

communication.

Is it perfect? Of course not. But this does fit the bill of

allowing multiple micro frontends to co-exist at runtime.

Tanmaya Gaur / IJCTT, 72(6), 15-24, 2024

17

Fig. 2 Pattern for iframe rendered web architecture

2.3. Build Time Scaffolding

The approach (see Figure 3) utilizes a build time instead

of run time compilation and thus loses some of the flexibility

that was discussed earlier on. The approach is to code each

micro-frontend as an independent library which gets compiled

together at build time. The flexibility of being able to deploy

without impacting the rest of the app is lost, as the whole app

needs to be recompiled prior to each code drop.

Fig. 3 Build-time scaffolding to develop modularized web applications

Tanmaya Gaur / IJCTT, 72(6), 15-24, 2024

18

2.4. Web-Components

There has long existed a JavaScript approach to building

a UI experience on the fly by appending HTML to the

experience. Essentially, a JavaScript method executed based

on certain triggers can, at runtime, create an HTML and then

append or remove the into the Document object Model.

An extension of this approach was used to build a micro-

frontend concept using the web component standard (see

Figure 4). Web Components is a suite of different technologies

allowing you to create reusable custom elements, among other

things like shadow DOM, templates, and html imports. The

custom elements specifically provide a way for developers to

build their own fully-featured experiences, which can be

exposed as standalone DOM elements. The

createCustomElement() function defined in the spec provides

ways to register these standalone components with the

browser.

Custom elements bootstrap themselves when launched -

they start automatically when they are added to the DOM and

are automatically destroyed when removed from the DOM.

Once a custom element is added to the DOM for any page, it

looks and behaves like any other HTML element and does not

require any special knowledge of Angular terms or usage

conventions.

Web development frameworks like Angular are also on

board with this emerging trend. Angular, for example,

supports Angular elements, which are Angular components

packaged as custom elements. Custom elements or extensions

like angular elements give you the base framework to code

micro-frontend style apps, which get strung together at

runtime.

Fig. 4 Web component composing a micro-frontend at run-time

3. Development Team Structure and Evolution
Traditional development has evolved quite significantly since

web development began (see Figure 5)
• The initial development used in the 1990s was monolithic

architecture, where a single (One-Tier)system

consolidates all components, spanning the user interface

to data storage, within a single executable or process.

• Development evolved in the 2000s, and Two-Tier

architecture started becoming more popular. The two-tier

pattern bifurcates an application into a client and a server.

The client manages the user interface, while the server

handles backend functions.

Tanmaya Gaur / IJCTT, 72(6), 15-24, 2024

19

• By 2010, development had shifted towards three-tier and

later n-tier by 2010. The three-tier architecture is that

where each tier runs on its own infrastructure, each tier

can be developed simultaneously by a separate

development team. It allows for one tier to be updated or

scaled as needed without impacting all the other tiers.

• The N-Tier architecture builds upon the principles of the

Three-Tier model, allowing for an arbitrary number of

specialized tiers. Each tier focuses on specific

functionalities, fostering a more modular and distributed

approach to developing applications.

• The latest trend is where the n-tier applications use

modern technologies like containers and micro-services

and are often built in cloud-native technologies. The

microservices architecture allows a tier to be broken

down into small, independent services, each focusing on

a specific business capability.

Fig. 5 Evolution of web development architecture

Fig. 6 Early days of web development

Tanmaya Gaur / IJCTT, 72(6), 15-24, 2024

20

While the micro-services architecture allowed more

modern modular solutions to be applied to the backend Tiers,

the UI Applications continued to stay monolith. While not as

popular as micro-services, micro-frontend technologies are

now evolving to help bring the advantages of micro-services

to UI Tier as well.

Let’s dive deeper into what an organization would have

looked like prior to the advent of microservices becoming

standardized. Let us take the example of an enterprise with

large organizations managing domains like Payment, Billing,

Identity Management, Supply Chain, and commerce. In the

initial days of web development (see Figure 6), Each of these

organizations would have their independent teams exposing

their data through legacy technologies, which a large monolith

UI organization Team would consume directly or via legacy

middleware.

As enterprises matured, so did the API development

practices. Each backend organization started owning Micro-

services exposed through standardized API tiers and gateways

(see Figure 7). This was cleaner and maintainable and gave

organizations better control over the data they expose.

Fig. 7 Micro-frontends and API platforms positively impact web development

So, what does micro-frontend bring to the table? It allows

the UI to be developed as decoupled codebases with

independent deployability. This reduces the scope of any

given deployment, which in turn reduces the scope of testing

and the risk of outages across the broader application. Given

this, it allows organizations the ability to have independent,

autonomous teams (see Figures 8 and 9).

Tanmaya Gaur / IJCTT, 72(6), 15-24, 2024

21

Fig. 8 Micro-frontends follow independent lifecycle from development to production

Fig. 9 Micro-frontend development architecture

Tanmaya Gaur / IJCTT, 72(6), 15-24, 2024

22

So, does micro-frontend really change how an

organization structures its UI teams? Not necessarily. The UI

can still continue to be owned by a single UI organization, and

that still works. However, the real power of micro-frontends

lies in the fact that you can now have the actual business

organizations own their UI functions as well. As an example,

Payment teams can own the payment UI. IAM teams can own

AuthN, AuthZ and profile-related UI functions.

Just like any enterprise looking to standardize its software

tooling practices across a Tier, good governance and

automation are key to managing the micro-frontend. The next

section will go over challenges with micro-frontend during

initial development and at scale.

4. Micro-frontend Implementation Challenges
This section will focus specifically on Challenges with

web component-style micro-frontends. These challenges

apply to other patterns as well, with some variations. This

paper will not dive deeper into these challenges but that may

be a topic for future research and publications.

4.1. Duplication

Duplication comes from two aspects.

• Each independently executable micro-frontend references

its own dependencies to allow it to launch standalone.

This can often mean that the application has multiple

micro-frontends referencing the same libraries

independently. The fact that there may be different

versions of the same library being referenced makes

things worse and often causes conflicts.

An example would be if multiple micro-frontends were

using angular elements. Each of them references angular

independently. Given the large footprint of the angular

base framework, this duplication can result in significant

additional downloads, resource utilization and

performance impacts.

There are certain modern enhancements like module

federation architecture which help us optimize for this

issue.

• Without proper governance, teams may duplicate certain

experience or non-functional functions. At scale,

awareness and discoverability can start becoming a big

challenge. Good documentation and architectural and

product governance over the platform, with an observable

process for new development, is crucial to avoid this

pitfall.

4.2. Performance

Directly linked to the duplication challenge is the impact

on performance. Most user agents have fixed CPU, Memory,

or RAM limits. Monoliths often have a base module which

launches reusable functions utilized by every other module.

Micro-frontends often have multiple instances of the base

framework running in parallel.

Optimizing dependencies and developing common

functions in base containers or designing them to reside in

microapps are techniques to ease the dependency on

resources, thereby improving performance.

If a web development implementation utilizes a bulky

base framework like angular, dynamic module federation

techniques are crucial to scale. Module federation allows an

app to share third-party packages across remotes. This means

that when you load a federated module from a remote,

Webpack does not need to re-download a copy of these

packages. Is it worth the effort? It is likely one of the most

exciting new features in Webpack and is a game-changer in

JavaScript architecture.

4.3. CSS Leaks

This issue stems from one micro-frontend’s CSS

impacting others due to incorrectly scoped CSS. In regular

monolith UIs, this kind of issue would be easy to identify

during testing and easily fixable. What makes matters worse

is that for a micro-frontend at scale, this may cause

unintentional impacts only on a certain permutation of the test

scenario. A certain microapp launched after another microapp.

This, in addition to the fact that micro-frontend promotes

incremental code drops without wide regression, such issues

often only get identified in production.

Do not mistake a CSS leak as a non-functional low

severity experience issue. There can be situations where the

CSS leak causes a particular functional CTA to completely

disappear from the viewable area of the DOM, creating an

outage for parts of the website.

To remediate this issue, good CSS governance with

scopes per micro-frontend or utilizing enhanced web

standards like Shadow DOM allows us to mitigate this issue

successfully. Ideally, these are built and advised as

foundational aspects of the micro-frontend strategy.

4.4. Clean Separation of Concerns (between Micro-

frontends)
While seeming independent, Modules across complex

CRM apps need to talk. There are aspects of a session state

that need to be shared in real time to provide for these needs.

An example in a telco use-case would be if you log into a

customer account and cancel a line; any relevant cache any

other micro-frontend has saved needs to be wiped clean.

Depending on how granular a development team builds a

micro-frontend, they may also need to share some common

state, e.g. if payments are a micro-frontend used both by upsell

and add remove services flows, the flows may need to supply

some context to the payment micro-frontend on launch so it

can launch appropriate experience.

Tanmaya Gaur / IJCTT, 72(6), 15-24, 2024

23

One way to achieve this would be to keep no state cache

on the client and make everything an API call to a backend.

This, of course, has larger cost, complexity, and performance

implications.

The best solution is to provide a common layer for the

messaging and state sharing as part of the base framework. Its

best to abstract the microapps from each other and have them

share state through well-defined methods that serve as the

abstraction.

4.5. Overall Governance
Isn’t governance a crucial aspect of any enterprise

initiative developing a UI application? That is very true, and

this paper is not discounting that. What is being called out is

that this becomes especially harder when you develop a UI as

a micro-frontend. Multiple teams who are working on

independent codebases find it tough to identify already

available features, functions, and utilities that are ripe for

reuse. Lack of discoverability of such reuse opportunities can

lead to duplication and performance issues as well as cause the

development estimates to be higher. Also, the operational

costs of these duplicate implementations are no less

significant and will be the next topic.

It is key to foster governance early in the architecture and

design phase. It is ideal for this governance to be a dedicated

team. It is also ideal that a lot of this governance be automated,

as that makes life easy for this dedicated team as the initiative

scales. Something beneficial is to have a boilerplate

implementation of the micro-frontend that all development

teams can enforce to use. The same with CI/CD. Having

control over the Build and deploy pipeline also allowed us to

apply automated controls across the lifecycle of a micro-

frontend’s SDLC.

4.6. Runtime Conflicts
An earlier topic touched on the duplication of

dependencies and the fact that these dependencies may not

always be the same version. This can manifest in multiple

ways. As an example, the two versions of a library the

application depends on May not be backwards compatible.

These issues are tricky to identify and debug, just like CSS

issues, as they again need a specific test scenario to execute to

reproduce. Additionally, at times, the only possible fix may

require one of the microapps to change the dependency to

align. This can cause team conflicts and needs some

negotiation. Often, this version change may not be a

straightforward fix.

4.7. Integration Testing and Environments
Like micro-services, micro-frontends provide us with the

benefits of developing and deploying the application as

smaller units of code, which, in theory, negates the need for

app-wide regression. The difference, however, is the fact that

unlike micro-services, which run on discrete independent

servers and are isolated at runtime, micro-frontends are all

returned to a single browser and run on a single executable

environment. As such, there are integration issues and

conflicts like the CSS Java-script related challenges which

were discussed earlier. Given the higher payload size and code

duplication, there are also performance testing considerations

for larger apps. This integration testing needs and having to

maintain integration test environments is similar to traditional

web development. This, however, takes away the

independence of the team’s micro-frontend promises unless

there is a high level of automation in testing and ci/cd and

democratization between teams or to a dedicated test

authority.

4.8. Long-term Operational Costs
As touched on in the last topic, the duplication associated

with micro-frontends often comes with a higher cost of

development. Now let us consider an issue with an angular

vulnerability, if a microapp did not implement module

federation, such a security issue which needs a quick fix will

need to be fixed across multiple projects quickly. There can be

scenarios in which a single line of code in a traditional

Application’s base module ends up requiring teams to touch

every single micro-frontend they deploy.

While not always remediable, this was one scenario

which is mitigated if teams have a good base boilerplate

codebase and a high amount of automation in integration,

deployment, and testing.

5. Conclusion
To conclude, A micro-frontend does bring about a new

era to web development architecture and capabilities. This

also means that development organizations encounter very

different complexities than are encountered in traditional

application development. These complexities are not only

development and tech stack but also impact an organization’s

structure. To make the best use of technology like micro-

frontend, especially in enterprise use-cases like CRM

solutions, it makes sense to understand these implications and

challenges upfront and to solve them early.

The goal of this paper was not to dissuade the use of

micro-frontend but to instead point out the challenges

encountered in running it at scale. Although the development

paradigm lets developers divide a large frontend application

into smaller independent UI micro-frontends and code them

independently, this does not force each team should do so

completely in a silo. It is almost necessary to over-share to be

successful. It is beneficial for teams to partner across

solutions, create reusable components, and make

discoverability a priority.

Tanmaya Gaur / IJCTT, 72(6), 15-24, 2024

24

References
[1] Andrey Pavlenko et al., “Micro-Frontends: Application of Microservices to Web Front-Ends,” Journal of Internet Services and

Information Security, vol. 10, no. 2, pp. 49-66, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[2] Antonello Zanini, 5 Pitfalls of Using Micro Frontends and How to Avoid Them, The Sitepoint Website, 2022. [Online]. Available:

https://www.sitepoint.com/micro-frontend-architecture-pitfalls

[3] The IBM Website, What is Three-Tier Architecture?. [Online]. Available: https://www.ibm.com/topics/three-tier-architecture

[4] The Mozilla Website, CustomElementRegistry: define() method, mdn web doc. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/API/CustomElementRegistry/define

[5] The Angular Website. Angular Elements Overview. [Online]. Available: https://angular.io/guide/elements

[6] The MartinFowler Website, Micro Frontends, 2019. [Online]. Available: https://martinfowler.com/articles/micro-frontends.html

[7] Microfrontend Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Microfrontend

[8] Web Components Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Web_Components

[9] Single SPA, Concept: Microfrontends. [Online]. Available: https://single-spa.js.org/docs/microfrontends-concept/

[10] Github.com, Micro Frontend Resources. [Online]. Available: https://github.com/billyjov/microfrontend-resources

[11] Slideshare.net, Micro-Frontends. [Online]. Available: https://www.slideshare.net/SrikanthJallapuram/micro-frontends-78813796

[12] Emilija Stefanovska, and Vladimir Trajkovik, “Evaluating Micro Frontend Approaches for Code Reusability,” Communications in

Computer and Information Science, vol. 1740, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[13] Manfred Steyer, 6 Things You Should Know About MicroFrontends @ngCopenhagen, 2020. [Online]. Available:

https://speakerdeck.com/manfredsteyer/6-things-you-should-know-about-microfrontends-at-ngcopenhagen-juni-2020

[14] Nilesh Savani, “The Future of Web Development: An In-depth Analysis of Micro-Frontend Approaches,” International Journal of

Computer Trends and Technology, vol. 71, no. 11, pp. 65-69, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[15] Stack Overflow, Micro Frontend Architecture Advice. [Online]. Available: https://stackoverflow.com/questions/47922293/micro-

frontend-architecture-advice

http://doi.org/10.22667/JISIS.2020.05.31.049
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Micro-frontends%3A+application+of+microservices+to+web+front-ends&btnG=
https://jisis.org/article/jisis-2020-vol10-no2-04/69522/
https://doi.org/10.1007/978-3-031-22792-9_8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluating+Micro+Frontend+Approaches+for+Code+Reusability&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-22792-9_8
https://doi.org/10.14445/22312803/IJCTT-V71I11P109
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Future+of+Web+Development%3A+An+In-depth+Analysis+of+Micro-Frontend+Approaches&btnG=
https://www.ijcttjournal.org/archives/ijctt-v71i11p109

